Print E-mail
Volume 46, Number 1, February 2013

The phylogenetic analysis and putative function of lysine 2,3-aminomutase from methanoarchaea infers the potential biocatalysts for the synthesis of β-lysine

 


Chuan-Chuan Hung, Mei-Chin Lai


Received: August 26, 2011    Revised: November 2, 2011    Accepted: November 24, 2011   

 

Corresponding author:

Mei-Chin Lai, Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC.



 

Background and purpose: 

β-amino acids play important biological roles as precursors in the biosynthesis of antibiotics, anticancer agents, neurotransmitters, and other high molecular weight polymers. Microbial cells and enzymes from extreme environments offer new opportunities for biocatalysis and biotransformations as a result of their extreme stability. Lysine 2,3-aminomutase catalyzes the interconversion of L-α-lysine and L-β-lysine. L-β-lysine is a precursor in the bacterial biosynthesis of several antibiotics, and also is a precursor in the biosynthesis of osmolyte Nε-acetyl-β-lysine for salt stress and adaptation in methanoarchaea.



 

Methods:

Lysine 2,3-aminomutase (AblA) genes from the marine Methanosarcina mazei N2M9705, halotolerant Methanocalculus chunghsingensis K1F9705bT, and halophilic Methanohalophilus portucalensis FDF1T were cloned by PCR and southern hybridization. Both nucleotide and amino acid sequences of AblAs were analyzed and phylogenetic comparisons performed. Additionally, the functional motifs and 3D structure of aminomutases were aligned and compared.



 

Results:

The deduced amino acid sequences of AblAs from methanoarchaea share high identity with the known clostridial andBacillus lysine 2,3-aminomutase. The conserved amino acid residues for cofactors, such as the iron-sulfur cluster, S-adenosylmethionine (SAM), pyridoxal 5'-phosphate (PLP) and zinc-binding sites in methanoarchaeal AblAs suggested that they were lysine 2,3-aminomutases.



 

Conclusion:

AblAs from methanoarchaea are lysine 2,3-aminomutases that may function as potential biocatalysts for the synthesis of β-lysine in vivo and in vitro.



 

Key words:

Archaeaβ-lysineBiocatalystsLysine 2,3 aminomutaseMethanogen