ORIGINAL ARTICLE

VDR and VDBP genes polymorphisms associated with susceptibility to tuberculosis in a Han Taiwanese population

Shih-Wei Lee a,b, Tzu-Yi Chuanga, Hsiu-Han Huang a, Chi-Wei Liua, Yung-Hsi Kao b, Lawrence Shih-Hsin Wuc,*

a Chest Medicine Department of Internal Medicine, Taoyuan General Hospital, Taoyuan, Taiwan
b Department of Life Sciences, National Central University, Taoyuan, Taiwan
c Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan

Received 15 June 2015; received in revised form 9 November 2015; accepted 14 December 2015
Available online 12 January 2016

KEYWORDS
polymorphism; tuberculosis; VDBP; VDR

Abstract Background: The active metabolite (1, 25-dihydroxycholecalciferol) of vitamin D (25-hydroxycholecalciferol) leads to the activation of macrophages and the deficiency of vitamin D seems to be involved in the risk of tuberculosis (TB). The effects of vitamin D are exerted by interaction with the vitamin D receptor (VDR) and vitamin D receptor binding protein (VDBP) may be influenced by polymorphisms in the VDR and VDBP genes. In this study, variation in the VDR and VDBP genes was investigated in a Taiwanese population with TB.
Methods: We typed four VDR polymorphisms of restriction endonuclease sites for ApaI, TaqI, BsmI, and FokI and three VDBP polymorphisms—Thr420Lys, Asp416Glu, and Cys299Cys—in 198 patients with TB and 170 healthy volunteers.
Results: VDR TaqI, VDR BsmI, and VDBP Asp416Glu were significantly associated with TB susceptibility. Odd ratios of risk genotypes of the above three polymorphisms were 2.16 (95% confidence interval 1.01, 4.65), 2.14 (95% confidence interval 1.06, 4.31), and 2.24 (95% confidence interval 1.04, 4.80), respectively. VDBP haplotype analysis showed Gc1f carriers associated to TB.
Conclusion: The polymorphisms in the VDR and VDBP genes appeared to be responsible for host susceptibility to human TB in a Taiwanese population.

Copyright © 2016, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Institute of Medical Sciences, Tzu Chi University, 701 Zhongyang Road, Section 3, Hualien, 97004, Taiwan.
E-mail address: lshwu@hotmail.com (L.S.-H. Wu).

http://dx.doi.org/10.1016/j.jmii.2015.12.008
1684-1182/Copyright © 2016, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

According to the World Health Organization (WHO), approximately 8.6 million cases (8.3–9.0 million) of tuberculosis (TB) were estimated to have occurred in 2012, of which approximately 2.9 million were female. Most cases are estimated to have occurred in Asia and Africa (58% and 27%, respectively), with the highest incidence in India (2.0–2.4 million) and China (0.9–1.1 million), together accounting for 38% of the total number of cases. Previous studies in Taiwan have demonstrated a five-fold higher incidence of TB among aborigines as compared to Han Chinese. In addition, polymorphisms of the NRAMP1 gene appear to be associated with susceptibility to TB among aborigines, but not among the Han Chinese population. Our previous study showed polymorphisms in the interferon-γ gene to be associated with TB in the Han Taiwanese population. The genetic susceptibility to TB in Han Chinese living in Taiwan is remains unknown.

Calcitriol, also known as 1, 25-dihydroxyvitamin D3 and 1, 25(OH)2D3, an immunomodulatory hormone, acts via the vitamin D receptor (VDR) to alter genomic signaling. It regulates the differentiation and growth of various immune cells and the derivatives of calcitriol have been shown to inhibit the functional differentiation of dendritic cells, cytotoxic T-cells, and helper T-cells. Calcitriol inhibits the Th1 cytokine production and augments production of T-cell suppressing cytokines, TGF-β1 and IL-4. Studies have shown that calcitriol inhibits NK cell activity and differentiation of lymphokine-activated killer cells. It suppresses the growth of Mycobacterium tuberculosis in mononuclear phagocytes and toll-like receptor activation of human macrophages has been shown to upregulate expression of VDR and vitamin D 1α-hydroxylase genes leading to induction of cathelicidin and killing of M. tuberculosis. VDR gene variants have a wide role in innate immunity and specifically in TB and are associated with TB. The most well-known polymorphisms in the 3′ untranslated region (UTR) and start codon of VDR gene are Apal, BsmI, TaqI, and FokI, respectively. Some studies have indicated a strong association between BsmI gene polymorphism and pulmonary TB. It was seen that the f/f genotype for FokI and t/t genotype for TaqI occurred more frequently in TB patients.

Vitamin D metabolites in the circulation are bound to vitamin D binding protein (DBP), a widely expressed multifunctional 58 kDa serum glycoprotein encoded on chromosome 4. The DBP locus is among the most polymorphic known. Two common polymorphisms at codons 416 (GAT→GAG, Asp→Glu) and 420 (ACG→AAG, Thr→Lys) of exon 11 of the DBP gene (defined by the presence of restriction endonuclease sites for HaeIII and Styl, respectively) give rise to the three major electrophoretic variants of DBP, termed group-specific component 1 fast (Gc1F), Gc1 slow (Gc1S), and Gc2. These variants differ in their functional characteristics: the Gc1F and Gc1S variants have been reported to have a greater affinity for 25 (OH)D than the Gc2 variant, potentially leading to more efficient delivery of 25(OH)D to the target tissues, while the Gc2 variant is associated with decreased circulating concentrations of 25(OH)D, 1,25(OH)2D and DBP. The Gc2/2 genotype of VDRP was strongly associated with susceptibility to active tuberculosis in Gujarati Asians, compared with Gc1/1 genotype.

In this study, we examined the polymorphisms of VDR and VDBP to gain a better understanding about the possible correlation between genetic risk factors and susceptibility to TB in Taiwanese patients.

Materials and methods

Participants

A total of 198 patients who were treated for active TB at the General Taoyuan Hospital (Taoyuan, Taiwan) between 2009 and 2011 were surveyed consecutively. The inclusion criteria were: adult patients newly diagnosed with active TB, having evident lesions of TB by simple X-ray, computed tomography, and positive results of sputum smears and cultures for mycobacteria. In the control group, 170 volunteers without active TB or a history of TB were enrolled. Individuals with latent TB (confirmed by physician and Quantiferon test) history were excluded.

Written informed consent was obtained from each patient and volunteer enrolled in this study. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the Ethics Committee of Taoyuan General Hospital.

DNA preparation

Genomic DNA was extracted from oral swabs collected from the 198 TB patients and 170 non-TB volunteers using a QiAamp DNA Mini Kit (QIAGEN, Valencia, CA, USA) according to the manufacturer’s instructions. The extracted genomic DNA was analyzed using agarose gel electrophoresis and quantitatively determined by spectrophotometry, and stored at −80°C until use.

Single nucleotide polymorphism genotyping

All single nucleotide polymorphism (SNP) genotyping was performed using TaqMan SNP genotyping assays (ABI: Applied Biosystems Inc., Foster City, CA, USA). The primers and probes of the selected SNPs were from an ABI assay on demand kit. Reactions were carried out according to the manufacturer’s protocol (TaqMan SNP Genotyping Assays, protocol, Part Number 4332856 Rev. C). The probe fluorescence signal detection was performed using an ABI Prism 7900 Real-Time PCR System.

Statistical analysis

The quality of the genotype data were evaluated by Hardy–Weinberg equilibrium proportion tests. The association analyses were tested by the χ² test. Odds ratios and 95% confidence intervals were calculated from contingency tables. SNP(s) showing significant association (p ≤ 0.05) in the tests were further evaluated using logistic regressions adjusted for age and sex in odds ratio analysis. All
statistical analyses were performed with SPSS 17.0 software (SPSS Inc., Chicago, IL, USA).

Results

Demographic information of the study participants

In this study, 198 patients diagnosed with TB and 170 control individuals without history of TB infection were enrolled. There were significant differences in sex and age between groups. Male sex was more prevalent in the case group (Table 1). The average ages of the case and control group were found to have no significant differences (Table 1).

VDR and VDBP variant(s) associated with susceptibility to tuberculosis

Seven selected SNPs were genotyped by TaqMan SNP genotyping assays. None of the genotype distributions of the tested SNPs in the study participants deviated from the Hardy–Weinberg equilibrium. The strengths of associations and genotype frequencies of all selected SNPs with TB are summarized in Table 2. None of the SNPs appeared to be significantly associated with TB.

The odds ratio analysis adjusted by sex and age showed that AA of rs731236, GG of rs1544410 and A carriers (AA) of rs7041 were risk genotypes for susceptibility to TB (Table 3).

The polymorphisms rs4588 and rs7041 of VDBP were further analyzed according Gc2/Gc1 haplotype. The Gc1f carriers were associated with susceptibility of TB (Table 4).

Discussion

In this study, we revealed the SNPs rs731236 (Tagl) and rs1544410 (Bsml) of VDR and rs7041 (Asp416Glu) of VDBP associated with susceptibility of TB in the Han Taiwanese population. Genotypes AA of rs731236, GG of rs1544410 and A carriers (AA+AC) of rs7041 were risk genotypes for susceptibility to TB.

The Apal and Bsml polymorphisms were located in the intron region between exon 8 and exon 9 of the VDR gene. Although the nucleotide changes of the Apal and Bsml polymorphisms generated no changes in the amino acid or the structure of the expressed VDR protein, they might be in linkage disequilibrium with other functional polymorphisms which regulated VDR gene expression. Earlier studies have provided evidence of differential luciferase activity for the two 3’ UTR variants that were linked to the most frequent haplotypes. A previous meta-analysis showed recessive model (aa) of the Apal polymorphism and dominant model (Bb+bb) for the Bsml polymorphism both appeared to have a protective role on tuberculosis development in the European population. Our result showed homozygous of major allele of rs1544410 (Bsml: BB) of VDR is a risk genotype for TB (Table 2), which is consistent with the aforementioned meta-analysis in the European population. The Apal polymorphism did not show association to TB in our study population.

The mRNA coded from the Tagl t allele of the VDR gene would be more stable than the mRNA from the T allele of the VDR gene. Our result showed that rs731236 major

Table 1 Demographic data of the study participants.

<table>
<thead>
<tr>
<th></th>
<th>TB (198 cases)</th>
<th>Non-TB (170 controls)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean ± SD</td>
<td>55.78 ± 10.99</td>
<td>55.76 ± 18.62</td>
<td>0.199</td>
</tr>
<tr>
<td>Sex (n)</td>
<td>Male: 137</td>
<td>Male: 79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female: 61</td>
<td>Female: 91</td>
<td></td>
</tr>
</tbody>
</table>

Age was tested by t test; sex was tested by χ² test. SD = standard deviation TB = tuberculosis.

Table 2 Genotyping frequencies of selected single nucleotide polymorphisms (SNPs) of VDR and VDBP in the tuberculosis (TB) and non-TB groups and results of the χ² test.

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>SNP ID</th>
<th>Allele</th>
<th>Non-TB</th>
<th>TB</th>
<th>p</th>
<th>OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apal</td>
<td>rs7975232</td>
<td>A/C</td>
<td>16/65/89</td>
<td>17/78/103</td>
<td>0.950</td>
<td></td>
</tr>
<tr>
<td>Tagl</td>
<td>rs731236</td>
<td>A/G</td>
<td>149/20/1</td>
<td>186/12/0</td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td>Bsml</td>
<td>rs1544410</td>
<td>A/G</td>
<td>0/24/146</td>
<td>1/14/183</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>FokI</td>
<td>rs2228570</td>
<td>A/G</td>
<td>32/87/51</td>
<td>50/104/44</td>
<td>0.144</td>
<td></td>
</tr>
<tr>
<td>VDBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr420Lys</td>
<td>rs4588</td>
<td>A/C</td>
<td>15/62/93</td>
<td>14/80/104</td>
<td>0.669</td>
<td></td>
</tr>
<tr>
<td>Asp416Glu</td>
<td>rs7041</td>
<td>A/C</td>
<td>80/69/21</td>
<td>102/84/12</td>
<td>0.106</td>
<td></td>
</tr>
<tr>
<td>Cys299Cys</td>
<td>rs4725</td>
<td>C/T</td>
<td>1/22/147</td>
<td>4/24/170</td>
<td>0.488</td>
<td></td>
</tr>
</tbody>
</table>

*1: allele 1, 2: allele 2; **11: homozygous of allele 1, 12: heterozygous, 22: homozygous of allele 2.

Table 3 Odds ratio analysis of selected single nucleotide polymorphisms (SNPs).

<table>
<thead>
<tr>
<th>SNP ID</th>
<th>Genotype</th>
<th>Non-TB</th>
<th>TB</th>
<th>p</th>
<th>OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs7975232</td>
<td>AA+AC</td>
<td>81</td>
<td>89</td>
<td>0.949</td>
<td>n.d.</td>
</tr>
<tr>
<td>(Apal)</td>
<td>CC</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs731236</td>
<td>AA</td>
<td>149</td>
<td>186</td>
<td>0.035</td>
<td>2.16</td>
</tr>
<tr>
<td>(Tagl)</td>
<td>AG+GG</td>
<td>21</td>
<td>12</td>
<td>(1.01, 4.65)</td>
<td>p = 0.048</td>
</tr>
<tr>
<td>(ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1544410</td>
<td>AA+AG</td>
<td>24</td>
<td>15</td>
<td>0.042</td>
<td>2.14</td>
</tr>
<tr>
<td>(Bsml)</td>
<td>(ref.)</td>
<td>146</td>
<td>183</td>
<td>(1.06, 4.31)</td>
<td>p = 0.034</td>
</tr>
<tr>
<td>GG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2228570</td>
<td>AA+AG</td>
<td>119</td>
<td>154</td>
<td>0.089</td>
<td>n.d.</td>
</tr>
<tr>
<td>(FokI)</td>
<td>(ref.)</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs4588</td>
<td>AA+AC</td>
<td>77</td>
<td>94</td>
<td>0.676</td>
<td>n.d.</td>
</tr>
<tr>
<td>(Thr420Lys)</td>
<td>CC</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs7041</td>
<td>AA+AC</td>
<td>149</td>
<td>186</td>
<td>0.035</td>
<td>2.24</td>
</tr>
<tr>
<td>(Asp416Glu)</td>
<td>CC (ref.)</td>
<td>21</td>
<td>12</td>
<td>(1.04, 4.80)</td>
<td>p = 0.039</td>
</tr>
<tr>
<td>rs4725</td>
<td>CC+CT</td>
<td>28</td>
<td>865</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>(Cys299Cys)</td>
<td>TT</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Adjusted for sex and age by logistic regression. CI = confidence interval; n.d. = not determined; OR = odds ratio; ref. = reference genotype.
allele homozygous (as TaqI, TT) is a risk genotype for TB (Table 2). A previous study revealed that the TaqI SNP in exon 9 near the 3′ UTR was in linkage disequilibrium with the Apal and BsmI polymorphisms,27 which may explain the same protective effect by the two variant alleles of the TaqI and BsmI polymorphisms on tuberculosis.

The FokI SNP was located within the exon 2 of the VDR gene, and evidence of FokI functionality has already been obtained.28 Thus, the f allele of FokI might decrease the activity of the VDR protein and deter the binding of active vitamin D and VDR. Three meta-analyses on the FokI polymorphism were in accordance and indicated that the f allele in a recessive model would increase the risk of tuberculosis, and the same effect was found in the Chinese population but not for other ethnicities.14,25,29 The association between FokI and TB in our study population did not show statistical significance, the marginal significant (Table 2; OR analysis, \(p = 0.089 \)), which may due to the small sample size. The analysis of the effect of the FokI polymorphism on tuberculosis was underpowered.

In 1987 a possible correlation was proposed between the homozygous Gc1F-phenotype and susceptibility to HIV infection/severity of HIV-related disease. Gc2-2 by contrast, should perform a protective role.30 Several later studies refuted this statement.31–33 Gc2 homozygotes were more common in TB relative to controls in two studies in Asian populations,23,34 but the risk appears to depend on an exogenous factor, but requires further study as to the reasons for synergy with vitamin levels. Our study was inconsistent with previous studies and showed an association between Gc1F carriers and risk of TB.

Previously, only one study had evaluated the DBP phenotype in TB patients and no differences were seen among patients and the control group.34 In that study, a 33% frequency of Gc2 in TB patients was slightly but not significantly higher than in the control group (26%), and this elevation was at the expense of both Gc1F and Gc1S alleles.34 Further studies are necessary to understand the physiological role of VDBP and its phenotypes on susceptibility to TB and other diseases.

If the vitamin D axis plays a role in TB pathogenesis,36 variation within genes such as GC and VDR could be relevant in promoting resistance or susceptibility to the infection. VDR has been more widely studied and genetic variation within it appears to influence lymphocyte response to M. tuberculosis.37 Nevertheless a meta-analysis of VDR studies was inconclusive,38 perhaps due to small study sizes and population heterogeneity. HIV status in particular may influence the apparent effect of susceptibility loci, perhaps because in HIV-positive individuals this surpasses the small risk attributable to genetic factors.39 Therefore, further investigation, including functional and genetic studies, for VDR and VDBP involving the pathology of TB are necessary.

Conflicts of interest

All authors have no conflicts of interest to declare.

Acknowledgments

Funding was obtained from Ministry of Health and Welfare (Taiwan) and the grant number is 10111.

References

Polymorphisms of VDR and VDRP associated with TB

