Risk factors associated with death in patients with severe respiratory syncytial virus infection

Yen-I Lee, Chun-Chih Peng, Nan-Chang Chiu, Daniel Tsung-Ning Huang, Fu-Yuan Huang, Hsin Chi

Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan

Received 28 April 2014; received in revised form 29 August 2014; accepted 29 August 2014
Available online 31 October 2014

Keywords
Down’s syndrome; mortality; nosocomial infection; respiratory syncytial virus; risk factors

Background: Respiratory syncytial virus (RSV) infection is an important cause of viral respiratory tract infection in children. This retrospective study describes the clinical characteristics of severe RSV infection and determines the risk factors for death.

Methods: Patients were identified through a review of all patients discharged with a diagnosis of RSV lower respiratory tract infection and admitted to hospital in the pediatric intensive care unit (PICU) of a tertiary medical center between July 1, 2001 and June 30, 2010. The medical and demographic variables were recorded and analyzed.

Results: The 186 RSV-positive patients admitted to the PICU had a median age of 5.3 months (interquartile range 2.3–12.4 months) and included 129 boys and 57 girls. Among them, 134 had at least one underlying disease: prematurity in 92, neurological disease in 57, bronchopulmonary dysplasia in 40, congenital heart disease in 26, hematological malignancies in 11, and Down’s syndrome in nine patients. The 10 patients who died from RSV-related causes had a median age of 20.8 months (interquartile range 6.6–89.2 months) and all had a comorbidity. In multivariate analysis, the risk factors for death in severe RSV infection were Down’s syndrome (odds ratio 7.20, 95% confidence interval 1.13–45.76; p = 0.036) and nosocomial RSV infection (odds ratio 4.46, 95% confidence interval 1.09–18.27; p = 0.038).

Conclusion: Down’s syndrome and nosocomial RSV infection are significantly associated with death in severe RSV infections. Clinicians should be alert to these conditions.
Introduction

Respiratory syncytial virus (RSV) is an important cause of acute lower respiratory tract infection (LRTI) in children younger than 5 years of age. In 2005, RSV was estimated to be responsible for at least 3.4 million episodes of severe LRTI requiring admission to hospital in children worldwide and caused 66,000–199,000 deaths in children younger than 5 years old.1 In Switzerland, RSV infections cause a large proportion of respiratory hospitalizations and deaths among infants under 1 year of age. RSV infections are associated with intermediate or intensive care unit (ICU) admissions of approximately 1–2% of each annual birth cohort.2 In a retrospective study in Hong Kong, the rate of RSV-associated ICU admissions was 2.4% among 4912 RSV-positive pediatric patients.3

Many studies have shown that patients at risk of severe RSV disease include premature infants,4,5 children with hemodynamically significant congenital heart disease (CHD),4,6,7 patients with bronchopulmonary dysplasia (BPD),4,5,8 and those who are immunocompromised.6,9,10 However, data regarding risk factors for death in severe RSV infection remain limited. The aim of this retrospective study was to identify the clinical characteristics of patients admitted to the pediatric intensive care unit (PICU) with RSV infection and the risk factors for death.

Materials and methods

Ethics statement

The Ethics Committee of Mackay Memorial Hospital, Taipei, Taiwan approved this study (Institute Review Board number MMH-1-S-627, protocol title “Clinical Features of Pediatric Respiratory Syncytial Virus Infections: Risk Factors and Outcome”).

Patient inclusion

Patients were identified through a review of medical records from July 1, 2001 to June 30, 2010. This study used data from a 12-bed PICU in a tertiary medical center. Patients aged ≤18 years and discharged with a diagnosis of RSV LRTI were evaluated. The diagnosis was confirmed by an RSV antigen immunofluorescence test and/or culture from specimens taken from nasopharyngeal or throat swabs. Patients who were admitted to the PICU and were labeled as "severe" were enrolled into this study.

The general policy was that patients who required mechanical respiratory support or intensive care were transferred to the PICU. In the PICU, respiratory support included mechanical ventilation (conventional and high frequency), nasal intermittent positive pressure ventilation, nasal continuous positive airway pressure, and supplemental oxygen only.

Virology sampling and investigations

Diagnostic samples, including nasopharyngeal aspirates for the RSV antigen test and throat virus cultures, were obtained by residents, nurses, or PICU staff members. The RSV was identified using IMAGEN Respiratory Syncytial Virus (Oxoid Ely Ltd, Hampshire, UK), a qualitative immunofluorescence test for the direct detection of RSV in clinical specimens. Throat swabs for viral culture used standard cell culture methods.

Treatment with ribavirin

Ribavirin treatment was used for PICU patients younger than 6 years of age who had RSV LRTI and least one of the following: (1) high-risk for RSV infection, including immunocompromised patients, prematurity, or patients with CHD, BPD, or a malignancy being treated with chemotherapy; (2) severe respiratory distress (Pao2 ≤ 55 mmHg or Sao2 ≤ 90%); and (3) requiring ventilator support. Ribavirin (20 mg/mL) was given via continuous aerosol administration for 12–18 hours daily for 3 days. However, ribavirin became unavailable in Taiwan from February 2009.

Definitions of variables

Children with gestational age <37 weeks were regarded as preterm. Hemato-oncological diseases included acute lymphocytic leukemia, acute myeloid leukemia, chronic myeloid leukemia, and lymphoma. Congenital hemodynamically significant heart diseases or cyanotic heart diseases were defined as CHD. Patients with atrial septal defect were excluded from the study. Neurological diseases included cerebral palsy, neuromuscular diseases, or other central nervous system abnormalities. Patients with seizures were excluded from this category. Nosocomial RSV infection was defined as symptoms or signs of RSV infection developing 72 hours or more after admission for other diagnoses.

Statistical analysis

Frequency distribution analysis was used to describe the patients’ baseline characteristics. Median and interquartile ranges (IQRs) were used to interpret the demographic distributions. Continuous variables were expressed as a median with IQR and were compared using the Mann–Whitney U test. Categorical variables were presented as frequencies and percentages and were compared using the χ² or Fisher’s exact test as appropriate. Univariate analysis was performed to evaluate the relationship between the variables and death. The factors were also analyzed using a multivariate model built by backwards elimination (a significance level of 5%) to assess the
relationship to death. Statistical significance was set at $p < 0.05$. All analyses were performed using SPSS version 17.0 software (IBM Corporation, Somers, NY, USA).

Results

Demographic data and clinical characteristics

A total of 5675 patients proved to have an RSV infection, including 186 who were admitted to the PICU. Severe infections accounted for 3.3% of RSV infections. Of the 186 patients, 129 were boys and 57 were girls (ratio 2.3:1). Their mean age was 5.3 months (range 0.2–168.1 months). Ninety-two (49.5%) patients were born prematurely, 46 (24.7%) patients had a nosocomial RSV infection, and 54 (29.0%) patients received treatment with ribavirin. One hundred and thirty-four (72.0%) patients had at least one underlying disease. Respiratory support included mechanical ventilation (29.5%), nasal intermittent positive pressure ventilation (30.1%), nasal continuous positive airway pressure (10.8%), and oxygen supplement (29.5%). Ten patients died giving a mortality rate of 5.4% (Table 1).

Characteristics of the patients who died

Table 2 lists the characteristics of the patients who died. Patient 1 had a very long stay in hospital as a result of sepsis, which caused his death. Patient 5 had a ventricular septal defect, patent ductus arteriosus, and pulmonary hypertension. His condition deteriorated and he died a few days after surgery. His RSV infection was identified and was posited to have aggravated the burden of pulmonary and cardiac disease in this patient.

Analysis of risk factors for death

In univariate analysis (Table 3), hemato-oncological diseases [odds ratio (OR) 9.0, 95% confidence interval (CI) 1.95–41.45; $p = 0.019$], nosocomial infections (OR 5.10, 95% CI 1.37–18.97; $p = 0.016$), and treatment with ribavirin (OR 6.40, 95% CI 1.59–25.79; $p = 0.007$) were associated with death. Among the continuous variables, death was associated with a longer duration of fever and lower platelet counts. The duration of fever among survivors was 4.8 ± 8.3 days and among non-survivors was 8.8 ± 4.7 days ($p = 0.038$). The platelet count among survivors was 364.4 ± 171.5 × 10^3/mm^3 and among non-survivors was 187.8 ± 110.1 × 10^3/mm^3 ($p = 0.001$).

Using multiple logistic regression analysis (Table 4), Down’s syndrome (OR 7.20, 95% CI 1.13–45.76; $p = 0.036$) and nosocomial RSV infection (OR 4.46, 95% CI 1.09–18.27; $p = 0.038$) were predictive factors for death. Older children have more risk for death from RSV (OR 1.024, 95% CI 1.01–1.04; $p = 0.002$).

Discussion

In this study, all the children who died from severe RSV disease had pre-existing diseases. This study also showed that Down’s syndrome and nosocomial RSV infection are significant risk factor for death in severe RSV infection. Previous studies have shown that Down’s syndrome is a major risk factor for RSV LRTI. There are many possible explanations. Children with Down’s syndrome have an increased rate of comorbidities with both CHD and pulmonary hypertension, which are two independent risk factors for RSV LRTI. Patients with Down’s syndrome, even without coexisting risk factors such as CHD, still have higher risks of being admitted to hospital for RSV LRTI. Other hypothesized mechanisms include hypotonia, more injury-prone lungs, an abnormal upper respiratory anatomy, and altered lung growth. Immunological impairment associated with Down’s syndrome is also a potential mechanism, as demonstrated in many aspects including defects in adaptive and intrinsic immunity, diminished numbers of B and T cells due to abnormal thymus function, decreased lymphocyte numbers and responses to stimulations, reduced phagocytosis by neutrophils, and lower serum immunoglobulin levels.

Nosocomial RSV infection is also a risk factor for death in severe RSV infection. Comorbidity may confound the relationship between nosocomial RSV infection and death. In previous studies, children with BPD, CHD, and impaired immune systems had increased incidences of nosocomial RSV infection. This may be due to the longer stay in hospital and in the ICU and more exposure to potential cross-infection.

In multivariate analysis, older children have a higher risk for death from RSV infection. Older children often have...
milder symptoms than younger children when they have an RSV infection. However, in older children with severe RSV infection, death may be related to their underlying conditions and they may therefore present with more severe infections and more complications.

In this study, only 12 virus isolates underwent serotyping. Nine were RSV-A and three were RSV-B. A previous study has shown that there is no difference in severity of disease caused by RSV-A or RSV-B. However, the sample size in this study was too small to include this variable in the analysis.

Ribavirin is a guanosine analogue with antiviral activity against a variety of viruses. In 1985, the United States Food and Drug Administration approved its aerosol form for use in infants and children with RSV bronchiolitis. Some previous studies have shown that treatment with ribavirin can reduce the severity of illness, the duration of mechanical ventilation, the length of hospital stay, and viral shedding in RSV bronchiolitis. However, other studies have not shown these benefits. A 2004 systematic review of randomized trials showed that trials of treatment with nebulized ribavirin lacked sufficient power to provide reliable estimates of the effects. The American Academy of Pediatrics no longer recommends the routine use of ribavirin because of the high costs, concerns for its teratogenic potential in pregnant health care staff, and uncertainty about its effectiveness. Nonetheless, ribavirin may still be considered for selected patients with potentially life-threatening RSV infection. In this study, ribavirin was only given to a few patients. As ribavirin has not been available in Taiwan since February 2009, the effects of treatment with ribavirin are difficult to evaluate in this study.

Palivizumab is a monoclonal antibody produced by recombinant DNA technology used in the prevention of RSV infections. It has been universally used in Taiwan since December 2010 for specific high-risk patients, including

<table>
<thead>
<tr>
<th>Table 2 Characteristics of the ten patients with severe respiratory syncytial virus infections who died</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient no.</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

ALL = acute lymphoblastic leukemia; BPD = bronchopulmonary dysplasia; F = female; M = male; PDA = patent ductus arteriosus; VSD = ventricular septal defect.

<table>
<thead>
<tr>
<th>Table 3 Univariate analysis of the risk factors and death in patients with respiratory syncytial virus infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Male sex</td>
</tr>
<tr>
<td>Age (mo)</td>
</tr>
<tr>
<td>Preterm birth</td>
</tr>
<tr>
<td>Bronchopulmonary dysplasia</td>
</tr>
<tr>
<td>Congenital heart disease</td>
</tr>
<tr>
<td>Down’s syndrome</td>
</tr>
<tr>
<td>Neurological disease</td>
</tr>
<tr>
<td>Hemato-oncological disease</td>
</tr>
<tr>
<td>Nosocomial RSV infection</td>
</tr>
<tr>
<td>Treatment with ribavirin</td>
</tr>
<tr>
<td>Duration of fever (d)</td>
</tr>
<tr>
<td>Duration of hospitalization (d)</td>
</tr>
<tr>
<td>Duration of PICU stay (d)</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
</tr>
<tr>
<td>White blood cell count (×10³/mm³)</td>
</tr>
<tr>
<td>Platelet (×10³/mm³)</td>
</tr>
<tr>
<td>C reactive protein (mg/dL)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) or mean ± SD.

CI = confidence interval; OR = odds ratio; PICU = pediatric intensive care unit; RSV = respiratory syncytial virus.
those with prematurity with gestational age ≤ 28 weeks, prematurity with gestational age ≤ 35 weeks and BPD, and patients with hemodynamically significant heart disease. The patients in this study were recruited before palivizumab was used.

RSV is primarily spread by close contact with aerosols of infectious respiratory secretions and medical staff are often instrumental in its transmission. RSV is a labile virus and is rapidly inactivated by alcohol, dishwashing detergents, and antibacterial hand soaps. Thus hand-washing probably plays the most important part in infection control. Although there are various barrier methods, the isolation of RSV-positive patients in single rooms is recommended.38

This study is limited by its retrospective nature and small sample size. Further research is warranted to determine other risks factors for death in RSV infection.

In children with severe RSV disease, nosocomial RSV infection is associated with increased risk of death. Pre-existing diseases and co-morbidities, particularly Down’s syndrome, are significant risk factors for death from severe RSV infection.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

25. Thorburn K. Pre-existing disease is associated with a significantly higher risk of death in severe respiratory syncytial virus infection. *Arch Dis Child* 2009;94:99–103.

