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Molecular mechanisms of fluoroquinolone resistance
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Fluoroquinolones have a broad spectrum of activity for complicated urinary tract infections, gastrointestinal
infections, respiratory tract infections, sexually transmitted diseases, and chronic osteomyelitis. Since
fluoroquinolones are excellent antibiotics for a number of clinical indications, their consumption has increased
rapidly, both in human medicine and in food animals. Resistance to fluoroquinolones is chromosomal mediated,
involving mutations either in the target genes including DNA gyrase (gyrA or gyrB) and topoisomerase |V (parC or
parE), or in the regulatory factors controlling bacterial permeability or the efflux capacity of the bacteria. This
review focuses on mechanisms of fluoroquinolone resistance, including known and proposed molecular
mechanisms. This review also discuses the clinical impact of fluoroquinolone-resistant bacteria.
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In the early 1960s, the discovery of the naphthyridine
agent, nalidixic acid, opened the door for a series of
quinolones [1,2]. Nalidixic acid was first introduced as
a therapeutant for urinary tract infections caused by
gram-negative organisms. The second generation of
quinolone named fluoroquinolone (Fig. 1), such as
ciprofloxacin and ofloxacin, resulted from fluorination,
primarily at the position C6, has broad-spectrum activity
for genitourinary, respiratory, gastrointestinal tracts,
skin, and soft tissues infections caused by either gram-
negative or gram-positive bacteria and sexually
transmitted diseases [3,4].

Antimicrobial drug resistance is one of the factors
causing treatment failure in not just nosocomial
infections. To design new agents that provide effective
therapy for infections caused by organisms resistant to
older agents, we have to understand the mechanisms
responsible for drug resistance in older agents. These
mechanisms include reduction of drug accumulation,
alteration of drug target, bypassing the drug-targeted
enzyme, and inactivation of the drug. Resistance to
fluoroquinolones is chromosomal mediated including
mutations in the targets, overexpression of efflux
pumps, and loss of porins.

Mechanism of Action
Cell wall synthesis, protein synthesis, nucleotide
synthesis including RNA and DNA, and intermediary
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metabolism are essential components of microbial
metabolism and general targets of antimicrobial agents.
The antibacterial activity of fluoroquinolones is
inhibition of DNA replication. Fluoroquinolones have
dual targets, topoisomerase II (DNA gyrase) and
topoisomerase IV, which are related but distinct
enzymes involved in DNA synthesis [5]. Fluoroquino-
lones stabilize DNA strand breaks created by DNA
gyrase or topoisomerase IV by binding to the enzyme-
DNA complex. These ternary complexes consisting of
drug, enzyme, and DNA block the progress of the
replication fork.

DNA gyrase and topoisomerase IV share a
significant degree of homology at the protein level. Both
enzymes have a tetrameric A,B, structure [6,7]. The
DNA gyrase in Escherichia coli consists of 2 GyrA and
2 GyrB subunits encoded by the gyrA and gyrB genes,
respectively. The topoisomerase IV in E. coli consists
of 2 ParC and 2 ParE subunits encoded by the parC
and parE genes, respectively. The gyrA gene shares 36%
identity and 60% similarity with parC at the amino acid

“level. The gyrB and parE genes have 42% identity and

62% similarity [8-10].

DNA gyrase has 2 functions: (1) to remove the
positive supercoils during DNA replication, and (2) to
introduce negative supercoils (one supercoil for 15-20
turns of the DNA helix) in the presence of ATP so that
the DNA molecule can be packed into the cell [11,12].
The ATP binding domain is located in the N-terminal
half of GyrB [9]. The DNA binding, DNA breakage,
and interaction between A and B subunits are located
in GyrA. The Tyr-122 residue in the N-terminal of GyrA
participates in the breakage-reunion reaction with DNA
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Fig. 1. The pharmacophore change from nalidixic acid to ciprofloxacin.®Modification
of naphthyridone into quinolone reduces plasma protein binding. @Addition of the
fluorine atom was shown to increase quinolone activity against DNA gyrase and
facilitate penetration into the cell.®@Introduction of a piperazine results in a longer
half-life.@Replacement of the N-1 ethyl group by a cyclopropy! group can enhance

potency against gram-positive and gram-negative bacteria.

and is also considered to be within the active site of the
gyrase enzyme [9,12].

Unlike gyrase, topoisomerase IV does not wrap
DNA around itself. Topoisomerase IV decatenates DNA
before completion of a round of replication, whereas
gyrase decatenates only after one round of replication
[13]. The role of topoisomerase IV is to separate 2 linked
DNA molecules [14,15]. Both gyrase and topoisomerase
IV are essential for cell growth. Thus, they represent 2
potential lethal targets for quinolones.

Mechanisms of Fluoroquinolone
Resistance

The antimicrobial agent has to enter the cells, find its
target, disrupt the cellular function of cells, and
eliminate the infecting organisms to establish a
therapeutic success. There are many mechanisms,
including plasmid or chromosomal mediated, con-
tributing to a drug-resistant phenotype in infecting
organisms. The potential mechanisms are: (1) reduction
of drug accumulation including preventing the import
of drug into the cell and activating the efflux of drug

from the cell; (2) alteration of drug target by either.

mutating the target of drug, overexpressing the target,
or bypassing the drug-targeted enzyme by changing
other enzymes in the same enzymatic pathway; and (3)

inactivation of the drug by modifying or degrading the
drugs. A drug-resistant organism has to employ at least
one of these molecular mechanisms.

Target changes by alterations of DNA gyrase and/
or topoisomerase IV, and reduced intracellular drug
accumulation by reducing drug permeability and/or
increasing efflux activity, are the major mechanisms
mediating fluoroquinolone resistance (Fig. 2) [5]. Table
I summarizes the mechanisms of fluoroquinolone
resistance in bacteria. The evolution of resistance to
fluoroquinolones arises in a stepwise fashion through
the accumulation of spontaneous mutations in chro-
mosomal genes [16-18]. As the first step, mutations in
target genes are common, if not universal [5]. Earlier
observation of plasmid-mediated resistance has not yet
been confirmed [19]. Mutations in target genes result in
resistance to fluoroquinolones specifically, whereas

- alternations in efflux capability or permeability of

organisms usually cause resistance to not only quinolones
but also unrelated antibiotics, such as B-lactam drugs,
tetracyclines, and chloramphenicol [20-23].

Alteration of Drug Targets

DNA gyrase and topoisomerase [V involved in DNA
synthesis has been identified as the major targets of the
fluoroquinolones because mutations in these genes
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Fig. 2. Major molecular mechanisms of fluoroquinolone resistance: (1) alterations of target
enzymes (DNA gyrase and/or topoisomerase 1V) to prevent the drug binding; (2)
overexpression of efflux pumps to decrease accumulation of drugs; and (3) loss of porins
to reduce permeability of drugs in gram-negative bacteria. W = fluoroquinolones; §ab =
target enzymes, DNA gyrase, and/or topoisomerase 1V; @ = mutated target enzymes.

result in drug resistance [5]. In gram-negative bacteria,
such as E. coli, GyrA subunit of gyrase protein is the
primary target of fluoroquinolones, which is consistent
with the original proposition before the discovery of
topoisomerase IV in 1990 [8]. In some gram-positive
bacteria, such as Staphylococcus aureus, ParC subunit
of topoisomerase IV is the primary target for fluoro-
quinolones [24]. A mutation in topoisomerase IV, griA

in S. aureus, also increases the minimum inhibitory
concentration (MIC) of fluoroquinolones [25].
Resistance to fluoroquinolones in E. coli appears -
to be caused mainly by alterations in the gyrA gene
of the DNA gyrase and in the parC gene of the
topoisomerase IV (Table 2) (5,17,18]. Multiple mutations
occur within a single chromosomal gene, resulting in
mutants associated with variable MICs [17,18,26].

Table 1. Mechanisms of fluoroquinolone resistance in different organisms

Efflux components

Species Primary targets Minor targets Pump

components

Regulatory gene or Permeability References

mutation

Gram-negative bacteria

E. coli GyrA
EmrAB
Salmonella spp. GyrA GyrB AcrAB-TolC
Klebsiella spp. GyrA ParC
P. aeruginosa GyrA GyrB MexAB-OprM
MexCD-OprJ
MexEF-OprN
N. gonorrhoeae GyrA ParC
Campylobacter spp. GyrA
Helicobacter pylori GyrA
Gram-positive bacteria
S. aureus GrlA GyrA, GyrB NorA
E. faecalis GyrA
S. pneumoniae ParC GyrA, GyrB PmrA
Mycobacteria
Mycobacteria spp. GyrA GyrB LfrA

GyrB, ParC, ParE AcrAB-TolC marR, marA, robA, soxS OmpF, OmpC [27,42,54-56,70-74]

emrR
marR, soxR [26,75,76]
ramA Ompk35, Ompk36  [23,32,77,78]
mexR [79-81)]
nfxB [82,83]
nfxC [84,85]
[86-88]
[89,90]
(91]
flgB [49,50,70]
(51]
[39,92-95]
(96]
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Table 2. Alterations in GyrA and ParC in E. coli

Class No. of isolates MIC (ug/mL) GyrA ParC References
Ser83 Asp87 Ser80 Glug4

1 30 0.006-0.25 [18,71,74,97]

2 1 0.007-0.25 [31,98]

3 5 0.094-0.19 Asn, Gly, or Tyr [18]

4 1 0.032 Ala [99]

5 36 0.125-0.75 Leu [18,74,99]

6 1 2 Trp [71]

7 1 0.5-16 Leu [71,97]

8 8 0.25-4 Leu [31,98]

9 2 4-8 Leu Lys [74,97)
10 11 0.38-4 Leu Argor lle [18,74,97]
1 1 2 Leu lle Val [74]

12 14 8-128 Leu Asn, Gly, or Tyr [31,98]
13 4 2-128 Leu Asn or Gly [97]

14 8 4-64 Leu Asn, Gly, or Tyr Lys [18,71,74,97]
15 4 8-256 Leu Asn or Gly Arg [71,74,97]
16 43 6-256 Leu Asn, Gly, His, or Tyr lle [18,71,74,97]
17 9 32-128 Leu Asn or Tyr lle Gly, Lys, orVal  [18,71,74,99]

Different substitutions of one or several amino acids in
the gyrA gene result in a wild range of ciprofloxacins
MIC (from 0.32 to 2256 pg/mL). Most of the mutations
in the gyrA gene are located in a small region of N-
terminus of the GyrA protein (residues 67-106 in E.
coli), called the quinolone resistance determining re-
gion (QRDR) [27], near the Tyr122, which binds to
transiently cleaved DNA [9,12]. A similar QRDR has
also been reported in parC. According to studies of
mutant E. coli selected in vitro, mutations in gyrA result
first in a substitution of Ser83 followed by Asp87 [28].
Results of surveys of mutant E. coli found in vivo appear
consistent with the stepwise occurrence of mutations
observed in vitro; nearly all single-site mutants have
substitutions at Ser83 and most isolates with sub-
stitutions at Asp87 also have substitutions at Ser83 [5,
17,18].

Of fluoroquinolone-resistant clinical isolates,
mutations in either gyrA or parC are more common than
in either gyrB and parE. The most common substitution
is Ser83 — Leu83. In Kiebsiella pneumoniae, discrepant
amino acid, threonine [29,30] or serine [31,32], has been
found at codon 83 of the GyrA protein in fluoro-
quinolone-susceptible isolates. Weigel et al [31] showed
that the strain M5al with Thr83 amino acid position
may be a strain of Klebsiella oxytoca and our data
(unpublished) also showed that position 83 of GyrA in
all quinolone susceptible isolates is serine. Both
Campylobacter jejuni and Pseudomonas aeruginosa are
10-fold less susceptible to fluoroquinolones than wild-
type E. coli because they contain a threonine in place
of serine at position 83 of GyrA [33], underlining the

importance of Ser83 in fluoroquinolone resistance.
However, not all mutations in gyrA confer resistance to
all quinolones. Mutations Asp82Gly, Gly81Asp,
Asp87Asn, Asp87Gly, or Asp87Tyr alone lead to a low-
level resistance to fluoroquinolones [17,18,34].

According to the National Committee of Clinical
Laboratory Standards (NCCLS) guidelines, MICs of
ciprofloxacin 24 pg/mL, 2 }:Lg/mL, and <1 pg/mL are
considered as resistant, intermediate, and susceptible,
respectively [35]. There are 2 populations of fluoro-
quinolone susceptible isolates: one is fully suscept-
ible to fluoroquinolones and the other is reduced
susceptible to fluoroquinolones [17,18,36]. Isolates with
reduced susceptibility to fluoroquinolones had at least
one mutation in gyrA at Ser83 position and were resist-
ant to nalidixic acid, the first generation of quinolones.
No strain possessed a parC mutation without the
simultaneous presence of gyrA mutations in these
studies (Table 2) [17,18]. These findings are consistent
with fluoroquinolone resistance in E. coli arising in a
multistep fashion with mutations in gyrA occurring as
the first step [16]. In contrast, according to reports of
some gram-positive bacteria, such as S. aureus and
Streptococcus pneumoniae, mutants selected in a
stepwise fashion with ciprofloxacin indicate that parC
of topoisomerase IV can be the primary target of
ciprofloxacin (Table 1) [24,37-39].

Overexpression of Efflux Pump
Reduced intracellular drug accumulation by pumping
out the drug from the cell is one of the mechanisms

* that cause resistance. Even though mutations in drug



targets are the primary mechanism for fluoroquinolone
resistance, increasing the activity of efflux pump also
contributes to resistance, especially for high-level
resistance. Efflux pumps involved in fluoroquinolone
resistance also confer resistance to other non-structure-
related antibiotics. The multiple antibiotic resistance
(mar) locus has been reported to be responsible for
fluoroquinolone resistance in E. coli [40]. A deletion
or a point mutation in marR, a regulator gene of AcrAB
efflux system, has been found in quinolone-resistant
clinical E. coli isolates [41,42].

In P. aeruginosa, nalB [20], nfxC [43], and nfxB
[44] mutants were resistant to quinolones due to
overexpression of efflux pump systems MexA-MexB-
OprM [45], MexE-MexF-OprN [46], and MexC-MexD-
OprJ, respectively [21]. MexA-MexB-OprM efflux
system was overexpressed in the nalB type mutants due
to mutation in MexR, the repressor of MexA-MexB-
OprM [47]. This type of mutation results in resistance
to fluoroquinolones, carbenicillin, and tetracycline [20].
Both nfxB and nfxC type mutants were selected in
mice infected with P. aeruginosa and treated with peflo-
xacin [48]. Mutation in the nfxB regulator gene re-
sulted in overexpression of MexC-MexD-OprJ and
caused resistance to fluoroquinolones, erythromycin,
zwitterionic cephems, and chloramphenicol [21,22].
These observations described above show that fluo-
roquinolones are substrates for these 3 efflux sys-
tems. Mutations in these efflux systems can decrease
the susceptibility to fluoroquinolones from 2- to 8-fold
dependent upon the type of fluoroquinolone [46].

Efflux pumps have also been identified in gram-
positive bacteria. Mutation in norA, a multidrug efflux
transporter, caused resistance not only to fluoro-
quinolones but also to ethidium bromide, acridine
orange, tetracycline, and chloramphenicol in S. aureus
[49,50]. An energy-dependent efflux was shown to pump
out norfloxacin in both Enterococcus faecalis and
Enterococcus faecium [51], and was associated with
increased fluoroquinolone MICs in S. pneumoniae [52].
Recently, overexpression of IfrA efflux pump in
mycobacteria was shown to confer fluoroquinolone
resistance by decreasing drug accumulation in vitro [53].

Loss of Porins

Reduced intracellular drug accumulation by preventing
the drug from entering the organism can contribute to
resistance. Among gram-negative bacteria, porins form
a channel for molecules traveling through cell
membrane [54]. Decreasing the expression of outer
membrane protein OmpF or OmpC affects uptake of
fluoroquinolone in E. coli [54,55]. This is also the case
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for K. pneumoniae and E. coli, in that mutation in
ompk35 or ompk36 and homolog of ompF and ompC,
respectively, results in decreased susceptibility to
fluoroquinolones [23]. Recently, we have found that in
addition to mutation in gyrA, mutation in the ompk35
may be the primary mechanism of fluoroquinolone
resistance in K. pneumoniae (unpublished data).
However, the effect of porin loss on fluoroquinolone
resistance is not universal. In Salmonella, isolates
lacking OmpF porin showed no decrease in fluoro-
quinolone accumulation [56].

Fluoroquinolone Use

Fluoroquinolones are widely used in both human and
veterinary medicine. Compounds such as ofloxacin and
enrofloxacin administered to animals are either ident-
ical or similar to those of fluoroquinolone used in hu-
mans [57-59]. Antibiotics have been given to animals
as growth promoters or for therapeutic treatments.
Fluoroquinolone-resistant bacteria, such as Salmonella
species, Campylobacter species, and E. coli, have been
isolated from animals [60-62]. There is great concern
that antibiotic-resistant organisms from animals can be
transmitted to humans [59]. Even though there is no
direct evidence to confirm this possibility, we should
be aware that unrestricted use of antibiotics in both
human and veterinary medicine contribute to selective
pressure toward antibiotic resistance. To avoid the
potential problem of antibiotic resistance, many
countries prohibit antibiotics used in humans to be used
in animals [63].

Clinical Impact of Fluoroquinolone-
resistant Bacteria
Fluoroquinolone resistance in staphylococci is as-
sociated with susceptibility to methicillin. Less than
10% of methicillin-susceptible isolates are resistant to
fluoroquinolones, whereas the resistance is notably
more prevalent in the methicillin-resistant strains {64-
66]. A prospective study of K. pneumoniae bacteremia
found that 5.5% of isolates were resistant to ciprofloxacin
(unpublished data). Extended-spectrum B-lactamase
production was detected in 60% of these ciprofloxacin
resistant isolates, compared with 16% of ciprofloxacin
susceptible strains [67]. Recently, we have reported that
resistance to other antibiotics was more common in
ciprofloxacin-resistant isolates than in susceptible E.
coli [17]. Patients infected with resistant isolates were
more likely to have underlying cancer or received any
antibiotic than patients infected with susceptible isolates
(17].

Studies by researchers in our division have reported,
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as part of a national surveillance program in Taiwan
[36], that 11.3% (136/1203) and 21.7% (261/1203) of
E. coli clinical isolates were resistant and reduced-
susceptible to ciprofloxacin, respectively [17]. The
interpretation of current NCCLS guidelines cannot
distinguish reduced-susceptible E. coli from susceptible
ones [68]. Clinical failures of infections by Salmonella
species with reduced susceptibility to fluoroquinolones
in patients treated with fluoroquinolones have been
reported [69]. Thus, it is important to identify bacteria
with reduced susceptibility to fluoroquinolone because
they are prone to become resistant [17,18,59]. The
NCCLS guidelines define that isolates with inhibitory
zone diameters of ciprofloxacin of <15, 16 to 20, and
221 mm are resistant, intermediate, and susceptible to
ciprofloxacin, respectively. The breakpoint for the
definition of fluoroquinolone resistance in Neisseria
gonorrhoeae was adjusted recently due to reduced
susceptibility [68]. N. gonorrhoeae with zone diameters
of ciprofloxacin <27, 28 to 40, and 241 mm are con-
sidered as resistant, intermediate, and susceptible to
ciprofloxacin, respectively. We have recommended that
current NCCLS breakpoints for fluoroquinolone
resistance in Enterobacteriaceae be modified as follows:
zone diameters of ciprofloxacin <15, 16 to 29, and =230
mm be considered as resistant, reduced susceptible, and
susceptible to ciprofloxacin, respectively [18]. In order
to ensure that fluoroquinolones remain therapeutical-
ly effective, we have to be able to control the spread of
reduced-susceptible isolates by identifying these
isolates in hospital laboratories.
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